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depending on its applications. There have been recent reports that the overall porosity of deposit
can be predicted by a function of diffusive Knudsen number (Knp) and dimensionless translational
energy (yy) of the particle. Unlike compact structures, however, dendritic structures consisting of
multiple dendrites cannot be characterized solely by overall porosity and their formation
mechanism is not known. In this study, various structures of deposit were produced in a wide
range of deposition conditions (Knp: 1071°-101%; y.: 107°-10%) using off-lattice Monte Carlo
simulation, and the unique characteristics of the deposit could be visualized by presenting local
fractional accumulations of pores as color-filled contours. Furthermore, a spatial autocorrelation
was calculated for the contour plot in order to find a quantitative footprint of structural features
of nanoparticle deposits, in compact vs dendritic structures. As a result, we successfully identified
the dendritic-to-compact structural transition in a quantitative manner, for the first time. Lastly
considering the deposition behavior of particles, we developed a new model capable of a priori
prediction of the specific deposit structure among compact, dendritic, and transition structures,
given the deposition condition in terms of Knp and y.

1. Introduction

The deposit layer produced by deposition of aerosol nanoparticles has extremely high porosity, wide specific surface area, and
open-porous structure. Due to these structural features, nanoparticle deposits are widely used in various fields such as sensors and
catalysts. For example, Castillo et al. (2014) manufactured a highly porous catalytic electrode with a porosity of 95-98% through the
deposition of platinum/carbon (Pt/C) nanoparticles, thereby showing a significant increase of specific electric power (from 0.78 to
11.5 kW/gp) compared to conventional catalytic electrodes with a porosity of 30%-60% prepared by standard impregnation method.
Similarly, there are existing studies that applied nanoparticle deposition of metal oxides, such as tin dioxide or zinc monoxide, for
improving the performance of gas sensors (Madler et al., 2006a; Tricoli et al., 2008) or dye sensitized solar cells (Tricoli et al., 2016).
Moreover, nanoparticle deposit can not only increase the reaction sites but also have a great effect on various transport properties
(Torquato, 2002, p. 10) such as thermal conductivity (Kovalev & Gusarov, 2017) and permeability (Elmge et al., 2009), and me-
chanical properties (Gao et al., 2015), depending on its microstructure. Also, nanoparticle deposition plays an important role in other
fields such as filtration (Elmge et al., 2009; Gao et al., 2020; Kasper et al., 2010), micropatterning (Kim et al., 2006), and ash deposition

* Corresponding author.
E-mail address: donglee@pusan.ac.kr (D. Lee).

https://doi.org/10.1016/j.jaerosci.2021.105876

Received 21 July 2021; Received in revised form 2 September 2021; Accepted 4 September 2021
Available online 22 September 2021

0021-8502/© 2021 Elsevier Ltd. All rights reserved.


mailto:donglee@pusan.ac.kr
www.sciencedirect.com/science/journal/00218502
https://www.elsevier.com/locate/jaerosci
https://doi.org/10.1016/j.jaerosci.2021.105876
https://doi.org/10.1016/j.jaerosci.2021.105876
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2021.105876&domain=pdf
https://doi.org/10.1016/j.jaerosci.2021.105876

J. Kim et al. Journal of Aerosol Science 159 (2022) 105876

in coal-fired boilers (Kleinhans et al., 2018). Due to the wide applicability, there is a growing technical demand for understanding
nanoparticle deposition and a priori prediction of the resulting microstructures for design purpose.

Nanoparticle deposits are often observed as tree-like dendritic structures consisting of multiple individual dendrites with dendritic
branches, in addition to well-known porous compact structures. According to Thimsen and Biswas (2007) and Thimsen et al. (2008),
nanoparticle deposit produced by flame aerosol synthesis (Strobel & Pratsinis, 2007) has been determined to be composed of a number
of tree-like dendrites. These dendritic structures were prepared particularly for the purpose of controlling material properties
(Hawkeye & Brett, 2007) such as refractive index (Harris et al., 1984) and wettability (Fan et al., 2004), and for applications such as
superhydrophobic surface (Khedir et al., 2017), but the formation mechanism is not clearly revealed. Meanwhile, according to
Cherevko and Chung (2011), multi-scale pore structures in which macro pores of tens of micrometers coexist with mesopores of tens of
nanometers were beneficial for catalytic performance, presumably due to facile mass transport of reactants through the macro pores
and increase of surface area through the mesopores. It is noteworthy that dendritic structures have all of the structural features.

In addition to traditional sintering process, which is vulnerable to large open pores, a smooth-surface compact structure is preferred
as a thin film of optoelectronic device for improving the photovoltaic property (Choi et al., 2010; Ortiz et al., 2017). As for the surface
coatings, compact structures are required for corrosion protection and better mechanical properties (Hassani-Gangaraj et al., 2015). As
such, the required microstructure of nanoparticle deposit varies depending on its application, and thus a priori prediction of the
structure from deposition conditions is very important for the process design.

Experimental studies on the structure of the aerosol nanoparticle deposit (Castillo et al., 2014; Madler, Lall, & Friedlander, 2006;
Thimsen & Biswas, 2007; Thimsen et al., 2008; Tricoli et al., 2008, 2016) have been performed under a certain or narrow range of
temperature, pressure, and particle size, so it is very difficult to find experimental data covering a wide range of deposition conditions.
For this reason, numerical simulations in which deposition conditions are easy to control have alternatively been conducted to
investigate the microstructure of formed deposits in detail as follows.

Rodriguez-Perez et al. (2007) presented the density profile along deposition height using on-lattice Monte Carlo (MC) simulation.
Castillo et al. (2014) performed a similar MC simulation and showed the mean density of deposit as a function of Peclet number (the
ratio of advective transport rate to diffusive transport rate, Pe). Li et al. (2009) calculated the local density variation along with the
deposit height through on-lattice MC simulation, and expressed the fractal dimension (Df) (Veerapaneni & Wiesner, 1994) of the
deposit as a function of Pe. As a result, as Pe grew, Dy showed an asymptotic behavior that was initially increased and then leveled off
around 3 representing the compact structure. This morphological evolution closely relates to a sort of transition from an open dendritic
structure for small Pe to compact structures when Pe > 10794,

Unlike these existing studies that expressed deposition conditions as Pe only, Langevin dynamics simulations by Nasiri et al. (2015)
or Madler et al. (2006b) showed that a porosity of nanoparticles’ deposit was also decreased to some degree when the size of nano-
particles decreased from 50 nm to 5 nm at a fixed but small value of Pe. This suggests that another dimensionless parameter, in addition
to Pe number, is involved in the size effect of nanoparticles. For the purpose, Stokes number (Stk) that was defined with the particle
radius as a normalizing length scale has been used as the additional dimensionless variable along with Pe (Hunt et al., 2014; Lindquist
et al., 2014).

According to Lindquist et al. (2014), the two dimensionless numbers (Pe, Stk) are not appropriate to represent the operation
condition, because the two numbers change simultaneously with gas flow rate and ambient pressure, making it impossible to assess an
individual effect of gas pressure or flow rate. Alternatively, they proposed another set of dimensionless parameters: the diffusive
Knudsen number (Knp, proportional to the particles’ mean persistence distance to its radius) and the y, defined by the ratio of the
particle's translational energy at the advective velocity to the thermal energy. Based on these two dimensionless parameters (Knp, ),
they presented for the first time a contour map of average packing density of nanoparticle deposit that can be used for a priori pre-
diction of deposit porosity in a wide range of deposition conditions. However, it should also be noted that the predicted local or average
porosity does not manifest the presence of dendritic structure and their structural features.

Another notable trend in this area is to analyze pore size distributions of porous structures mostly by numerical simulations
(Bhattacharya & Gubbins, 2006; Lee & Hogan, 2021), because pore size distribution has also become a crucial property for the
maximal use of nanoparticle deposits under its control. Compared to the existing grid-based atomistic models, Bhattacharya and
Gubbins (2006) proposed a new method to greatly shorten the calculation time for pore size distribution of nanoporous materials, and
proved that the method is efficient for investigating pore size distributions of several mesoporous model (well ordered) materials.
Recently, Lee and Hogan (2021) applied for the first time the foregoing method for nanoparticle deposits with irregular structures and
very high porosities, and presented a variety of pore size distributions ranging from unimodal to bimodal. It is however noted that their
simulations of nanoparticle deposition were performed on a relatively small domain, mainly under advection dominant conditions
where near compact structures are preferentially produced. In fact, bimodal pore size distributions that might be associated with
dendritic structure were not observed when depositing spherical nanoparticles, which implies that their deposition condition was not
broad enough to cover the entire range of interest, i.e., from dendritic to compact structures. Thus, it is still unclear why and when such
dendritic structures are formed.

The objective of this study is therefore to unveil the unique characteristics of dendritic structures in comparison with compact
structure upon nanoparticle deposition, to provide a contour plot of the new structural index as a function of Knp and y; for the first
priori prediction of specific deposit structure between dendrite, compact, and intermediate structures from experimental conditions,
and finally to develop a new model for understanding what brings the structural difference. For the purpose, off-lattice MC simulation
was performed to produce various structures of nanoparticle deposit in a wide range of deposition conditions. Employing a concept of
vertical accumulation of local solid or void fraction that will be called ‘local porosity distribution’, we successfully visualized the
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structural difference between the three distinct deposit layers. Then, the spatial autocorrelation was calculated for the local porosity
distribution data and displayed with a contour plot against the two dimensionless parameters. As a result, we could identify three
specific conditional zones in terms of Knp and y;, under which dendritic or compact layer is preferentially formed or the compact-to-
dendritic structural transition takes place. Finally, a new mathematical model was developed to predict the specific microstructure
and/or its transition limit, given a deposition condition. Also, the prediction results were compared with the existing literature data.

2. Off-lattice Monte Carlo simulation

As aforementioned, the two dimensionless parameters, Knp and y;, are employed in this study as defined in Eqgs. (1a) and (1b),
respectively. Actually, the two numbers characterize random walks by diffusion and the advective motion by external force of
nanoparticles (Lindquist et al., 2014).
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where I is the mean free path of particles, r, is the particle radius, m, is the particle mass, kg is the Boltzmann constant, T is the
temperature of surrounding gas, and v, is the advective velocity of particles by external force. The friction coefficient f is calculated
using Stokes’ law and corrected by a slip correction factor C. (Hinds, 1999, p. 48; Madler & Friedlander, 2007). The two dimensionless
numbers include all the basic factors necessary for the deposition simulation, such as gas properties and physical state, the size and
mass of particle to be deposited, and the deposition velocity owing to external force. Also, they have the advantage of separating the
influence of pressure and external force (i.e., advective velocity), which are representative operating factors.

Particle behavior in proximity to deposit is characterized by the diffusive motion of the particle due to collision with surrounding
gas molecules and its advective motion due to external forces such as thermophoretic or electrostatic force, which can be expressed as
Eq. (2) (Kulkarni & Biswas, 2004).
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Here, the particle displacement from a position s'(t) at a time t to the next position s (t +At) is expressed as the vector sum of

— — —
diffusive displacement ( I g) and advective displacement ( I oq) for At. The [ 4 is calculated as V wAt, where the advective velocity
(V'aa) is set to be constant given a deposition condition in terms of Knp, and y,, so that the particle moves straight toward the deposition

surface. On the other hand, the Tdiff is a random displacement vector of nanoparticle by diffusion and is obtained by generating
random numbers in accordance with Gaussian distribution, where each directional component of the vector has a mean value of zero
and a standard deviation of v/2DAt (Hinds, 1999, p. 111; Moran et al., 2020). Also, the particle diffusivity D is calculated as kgT/ f.
Based on Eq. (2), nanoparticles are approximated to move toward the deposition plate while making sharp turns in different directions
every time step. According to Moran et al. (2020), however, the actual nanoparticles make smooth turns by their inertia, which gives
rise to an increase in their persistent distance or the corresponding time step with respect to the case of sharp turn. In this study, the
time step At is set to three times the conventional particle relaxation time (7, =m,/f) as suggested by Moran et al. (2020). The relevant
results will be compared with the results of Langevin dynamic simulation in the literature (Lindquist et al., 2014).

The calculation domain is a rectangular prism with a square bottom having a side of 1000r,. When it comes to the coordinate
system, x- and y axis are defined on the bottom surface with reference to the origin at a vertex, while the vertical z axis is positive
upwards from the origin. Note that all the coordinate axes are nondimensionalized by r, and marked with asterisk (e.g., 2" = z/ ).
Also note that the size of the calculation domain is maintained much larger than (Kulkarni & Biswas, 2004; Madler et al., 2006b; Nasiri
et al., 2015) or similar to (Castillo et al., 2014; Li et al., 2009; Lindquist et al., 2014; Rodriguez-Pérez et al., 2005) the existing
simulation studies; this is to avoid numerical artifacts (Nasiri et al., 2015) making the porosity less accurate in case of too small
calculation domain and to maintain the fluctuation of the overall porosity below 2% during iterative computations. On the four
sidewalls of the calculation domain, a periodic boundary condition is applied.

The present MC calculation was performed in the following order:

A. Create a nanoparticle at a random location on a horizontal x-y plane, 3(v/2DAt +1,4) above the top of the deposit.

. Calculate the overall displacement vector (As") of the particle by Eq. (2): AS = 5(t + At) — 5 (t).

C. Check if there is any pre-existing deposited particle on the path of As’; move the original particle to the next location 5 (t +At) just
in case there is no existing particle and return to the process B while updating the particle’s position vector; repeat this process until
otherwise occurs.

D. If otherwise, meaning that the moving particle collides with the existing particle (or the clean bottom surface) on the path, move the
original particle to the contact point and let it stick to the target, and return to the process A.

E. Repeat the foregoing (A-to-D) processes until the total number of deposited particles reaches the target value
(6,500,000-24,000,000 depending on the condition).

o
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When it comes to the process A, Nasiri et al. (2015) and Lindquist et al. (2014) fixed the height of creating (or launching) a new
nanoparticle at 40r, and 2.1r,, respectively, above the top of the deposit. Note that nanoparticle’s random walks make the calculation
time unacceptably long under highly diffusive conditions (high Knp and low y;), so one may need to reduce the launching height as
long as the resulting microstructure is unaffected. From our preliminary test, we defined the launching height as N(v/2DAt +1,4) from
the top of the deposit, which ensures a similar number of minimum steps required to reach the bottom surface regardless of deposition
conditions. With increasing N from 1 to 9, the resulting overall porosity (as well as spatial autocorrelation) was compared in Fig. S1 of
supplementary material, indicating that there is no significant N dependence upon N > 3. Consequently, N = 3 was taken and fixed
throughout this study.

It is also noteworthy that the abovementioned calculation process is basically a sequence of independent events that launches the
next particle after the end of particle deposition, which corresponds to a dilute limit condition in which particles behave independently
of each other as described by Lindquist et al. (2014). This condition is common in the field of filtration (Friedlander, 2000, p. 6), which
deals with a low number concentration of particles (<10° # cm™>), and often valid in film deposition of gas-phase reactor where
deposition occurs downstream of high-concentration reaction zone. Many literatures (Kubo et al., 2013; Nasiri et al., 2015; Thimsen &
Biswas, 2007; Thimsen et al., 2008; Zhang et al., 2012) relating to particle deposition experiments have also confirmed that individual
non-agglomerated particles are usually deposited without aggregation prior to deposition.

The contact inspection of a moving particle with existing particles in deposit is a major bottleneck in computation, so only existing
particles located within 4r, distance from the trajectory of the moving particle for At were considered for the collision detection. Of
particular interest is to note that all the aforementioned efforts allowed to perform numerical simulations, similar to those of previous
studies using high performance computing (Li et al., 2009; Lindquist et al., 2014), by only single-core operation (Intel 3.3 GHz i7-5820
K processor, 16 GB ram) of personal computers.

The range of the two dimensionless numbers considered in this study is very wide, with 10~-°>-101° for Knp and 1073103 for y;.
For example, in the case of TiO; particles at 300 K and 1 atm, the particle diameter corresponding to the Knp condition spans from 3.8
nm to 1.3 pm. Also under the same condition, metal (Ag, Pt, and Co) particles’ diameter lies in a range of ~5 nm-3 pm, and non-
metallic particles commonly used in the filtration field, such as plastic, ash, or NaCl, cover a range of ~3 nm-1 pm in diameter.
Thus, it is concluded that the current range of the two dimensionless numbers we considered is large enough to cover most particles
used in the environment and energy sector.

3. Simulation results
3.1. Validation

The present MC simulations are validated by comparing the results with those of Langevin dynamics simulation in the existing
literature (Lindquist et al., 2014). In particular, the existing literature provides a contour plot of packing density of nanoparticle
deposits in terms of Knp and yy, by performing the simulations in a range of 1072 < Knp < 10! and 107 < y < 10° for a large
computational domain (10007, x 1000r,). Note that their overall porosity (= 1 - packaging density) data are extracted from the
contour plot and directly compared with those of the present MC simulations in Fig. 1. As a result, our simulation data are well matched
with the literature data with a maximum (relative) error of 0.85% and an average error of 0.32% in the present condition (1071° <
Knp < 1051073 <y < 102).

Meanwhile, the overall or local-average porosity itself might not be able to differentiate between compact vs dendritic structures,
because distinctive characteristics of meso and macro pores existing inside and between dendrites can become smeared out in aver-
aging. Also it is very hard to find other experimental indicators that can quantitatively characterize dendrite structures. For further
validation, therefore, we performed MC simulations under the same conditions as two literatures (Thimsen & Biswas, 2007; Thimsen
et al., 2008) dealing with particle deposition experiments, and compared the overall morphology of as-created deposits with SEM
images from the literatures. Fig. 2 shows that the simulated deposit consists of a number of tree-like dendrites, which is quite similar to
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Fig. 1. Comparison of the overall porosity predicted by the present MC simulation with the literature data obtained through Langevin dynamics
simulation (Lindquist et al., 2014) under the same deposition conditions.
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the SEM image in their height, width, and shape. Note that the MC simulations were stopped when the simulated deposit grew to the
height seen on the SEM images.

For reference, according to Thimsen and Biswas (2007) and Thimsen et al. (2008), a flame aerosol reactor was used for formation
and deposition of TiO, nanoparticles; and the characteristic coalescence time (7.4 x 1073 ms) of the aerosol particles is much shorter
than the characteristic collision time (~0.1 ms), which results in the formation of fully sintered spherical particles prior to their
deposition. This implies no further aggregation of the particles until being deposited, which is in proximity of the present dilute limit
condition. In order to reproduce the environment for MC simulations as close to the experiment as possible, we collected basic in-
formation such as particle size, deposit thickness, and gas and substrate temperature from the literatures; and sequentially calculated
the deposit surface temperature, temperature gradients on the surface, and thermophoretic deposition velocity (Hinds, 1999, p. 171) of
the particles, referring to Madler et al. (2006a). The thermophoretic velocity was eventually used as an advective velocity in the
present MC simulation.

3.2. Visualization of structural difference of dendrites and compact layer

Previous simulation studies have often presented a S-shaped profile of local porosity in particle deposits along the height from the
bottom (Castillo et al., 2014; Kulkarni & Biswas, 2004; Li et al., 2009; Lindquist et al., 2014; Nasiri et al., 2015; Rodriguez-Perez et al.,
2007; Rodriguez-Perez et al., 2007, 2007; Veerapaneni & Wiesner, 1994), where the local porosity refers to the average porosity of a
(thin) virtual horizontal slice located at a vertical position z". Particle deposit layers are divided into bottom, middle, and top layers
depending on the local porosity behaviors along the z* (Castillo et al., 2014; Lindquist et al., 2014). The bottom layer represents the
densest but thin layer forming on the deposition substrate, in which the local porosity increases with height (+z" direction). The middle
layer that is connected to the bottom layer occupies most of the particle deposit volume, where the local porosity is almost unchanged
with height. The top layer represents the rough top of the deposit, where the porosity increases again from the constant value of the
middle layer due to the existence of open surface pores.

It is now recalled that the local porosity, which is basically a horizontal average of void fraction, does not describe the structural
characteristics of dendrites. Conversely, we introduced a concept of vertical average porosity in an attempt to visualize the distinct
structural features of compact and dendritic layers as follows. As seen in Fig. 3, the middle layer of the deposit completed by MC
simulation is cut to a thick slice with a certain height (42" = 100) and then divided into a large number of (virtual) vertical rectangular
prisms. Since each prism was set to have a square top and bottom with a side length equal to the particle diameter (Ax" = Ay" = 2), the
middle layer slice becomes 500 x 500 individual vertical prisms. Here, the void fraction (i.e., the vertical average porosity) within each
prism is calculated at the position of the prism, and then displayed with different colors on the entire top surface of the middle layer. As
such, the projection image of vertical porosities can visualize the distinctive structural features of deposits with a color-filled contour
plot (see Fig. 3; hereinafter referred to as “local porosity distribution (contour)”).

There is an issue with determining the height Az" of the middle layer slice. If the Az" is too large, particles belonging to different
branches could be involved in the porosity calculation for a single prism, which causes a smoothing of the internal structure of

Glass Substrate

Fig. 2. A comparison of the overall morphology of simulated deposits with SEM image in the literatures; the experimental conditions are (a)
log(Knp) = 1.7, log(yp) = —1.6 (Thimsen & Biswas, 2007) (b) log(Knp) = 1.5, log(yr) = —0.6 (Thimsen et al., 2008) (adapted from Thimsen and
Biswas (2007) with permission of Wiley-Blackwell and adapted from Thimsen et al. (2008) with permission of American Chemical Society); in the
simulation image, dendrites in the back are highlighted with a dark color. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Fig. 3. A conceptual diagram illustrating how to set up virtual vertical prisms and to visualize the local porosity data together with an example of
local porosity contour.

dendrites by excessive averaging. Given a too-thin slice, on the other hand, it does not represent the three-dimensional structure of the
dendrites, so the identification of dendrite itself becomes impossible. Hence, a set of preliminary simulation with three different values
of Az" was implemented to prove the two limiting cases. Fig. S2 of supplementary material shows that there seems no significant
difference in the local porosity contours while changing Az" from 10 to 100 and 200; however, in the case of Az" = 10, some of
branches that are parts of a dendrite could be seen separated from its stem in Fig. S2(a), being identified as another dendrites; whereas,
with 42" = 200, the internal structure and boundary of dendrites in Fig. S2(c) are clearly blurred as compared with Fig. S2(b) of 42" =
100. Consequently, the height of the prism will be fixed at Az" = 100 hereafter.

Fig. 4 shows the three contour plots of the local porosity distribution of deposits produced under different deposition conditions;
referring to the color scale, the red represents an area where particles are closely packed with a porosity of less than 80%, while the
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Fig. 4. Local porosity contour plots of deposit structures with identification of the structures such as (a) Compact structure (I = 0.23) under
log(Knp) = 0 and log(yz) = 2; (b) Dendritic structure (I = 0.90) under log(Knp) =1 and log(y;) = — 2; and (c) Intermediate structure (I = 0.53)

under log(Knp) = 1 and log(yz) = 0. The inset of (c) is a magnified image of red-square area (200r, x 200r,). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)



J. Kim et al. Journal of Aerosol Science 159 (2022) 105876

blue represents an empty area in which there are few particles with a porosity of close to 100%. From the figure, one may intuitively
notice the structural differences between dendritic and compact structures. Specifically, in Fig. 4(a), where the advection is dominant,
the red dots are randomly distributed over the entire area, so the overall porosity is also low. This proves that it is the compact
structure. In contrast, Fig. 4(b), which is the case of strong particle diffusion, is seen as if there are many individual islands on the sea.
In fact, the island is a single dendrite and a dendritic structure comprises multiple dendrites. Measuring the distance between dendrites
and the width of a dendrite allows to further explore the structural characteristics of dendrites in a quantitative manner. Fig. 4(c) shows
an interesting structural pattern of deposit obtained in the middle of the two extreme conditions, where neither the diffusion nor the
advection is dominating. Overall, the deposit layer looks like a near compact structure where small red lumps (but larger than the red
dots in Fig. 4(a)) are randomly and closely deposited. However, a closer look as in the presented inset reveals that the deposit layer also
has the structural feature of tiny dendrites. In particular, as the deposition condition changes from diffusion-dominant to advection-
dominant to some degree, i.e., from Fig. 4(b) to Fig. 4(c), the individual large dendrites clearly get smaller in size and closer to each
other in mutual distance. This morphology change is further progressed up to the compact structure in Fig. 4(a) with increasing
advection velocity; apparently, the small dendrites seen in Fig. 4(c) seem to break up into tiny particles and fill the void spaces with the
particles.

3.3. Overadll porosity and autocorrelation map

In this section, we present a process of quantifying the structural characteristics of the deposit observed in the previous section. The
spatial autocorrelation index, also known as Moran’s index (I) (Moran, 1950), is one of the indicators in statistics designed to evaluate
the spatial distribution of a given variable or the extent of being clustered (correlated). In the case of randomly dispersed, the index I
becomes zero, which represents the spatial randomness or independence of the dispersed particles. On the contrary, the closer the
index I is to +1, the more similar (highly correlated) regions are clustered, indicating that it is easy to discriminate them by neigh-
borhood similarity (Zhang & Lin, 2007).

We calculated spatial autocorrelation index for the local porosity distribution data seen in Fig. 4, in accordance with the calculation
process described in Appendix. As a result, I values are 0.23, 0.90, and 0.53 for the compact, dendritic, and intermediate structures of
Fig. 4(a), (b), and 4(c), respectively. It is notable that the I values vary depending on the structures exactly as stated above, suggesting
that the index I is likely used as an appropriate indicator for identifying the structure of particle deposits. Here, it should also be noted
that there is an issue with no distinct criterion on how to define the transition boundary of the three structures.

For this issue, we first divided each range of y, and Knp into 7 different bins that are equally spaced in log scale, which created 49
different cases in total (see the symbols in Fig. 5); and then repeatedly performed the MC simulation followed by the post processing to
yield the I values for the entire cases. The results show that the index I varies from 0.22 to 0.93 under the whole deposition conditions.
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Fig. 5. A graphical guidance of microstructural evolution of nanoparticle deposits with (a) the overall porosity contour and (b) spatial autocor-
relation index contour plotted as a function of log(y) and log(Knp); A diamond (4p) represents a dendritic structure, circle (o) represents a compact
structure, and triangle (a) represents an intermediate structure between the two. Upper and lower dotted lines (---) represent the transition
boundaries predicted by the first model Eq. (10) toward dendritic and compact structures, respectively. Solid line (—) and dashed line (- -) are the
predicted transition boundaries by the modified model equation, connecting the points having equal value of index I, i.e., =04 and I = 0.7,
respectively; Arrows Al, A2 and A3 indicate that three distinct structures can be formed even with a similar overall porosity. Arrow B represents the
point where the discrepancy between Eq. (10) and Eq. (14) begins.
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Based on 49 image sets of local porosity contour and the front view of deposit (such as Figs. 4 and 2, respectively), a comparative
analysis was undertaken to group the I values for specific cases that can be no doubt classified as dendrite or compact structure. As a
result, the cases of I > 0.7 safely result in dendritic structures, while the cases of I < 0.4 show compact structures. In the case of 0.4 <
I < 0.7, the resulting structure is hard to identify between dendrite and compact, just like in Fig. 4(c), so it was named as an inter-
mediate structure denoting the structural transition.

In Fig. 5(a) and (b), the overall porosity contour and spatial autocorrelation index contour are respectively plotted as a function of
log(yr) and log(Knp), wherein the three symbols signifying the three distinct deposit structures are overlaid on the contour plots:
diamond (4¢p) represents a dendritic structure; circle (o) represents a compact structure; and triangle (a) represents an intermediate
structure between the two. When it comes to the overall porosity contour in Fig. 5(a), the lower the y and/or the higher the Knp, the
overall porosity tends to increase (to the blue). When the condition becomes advection-dominant moving toward the lower right
corner, the overall porosity tends to decrease (to the red). As an exception, under diffusion-dominant conditions with log(y) < 0 and
log(Knp) > 0.5, the overall porosity begins to slightly decrease with further increase of log(Knp), which was attributed to the
strengthened random ballistic motion of tiny nanoparticles by Lindquist et al. (2014).

Of particular interest is to find diamond symbols only in the upper left corner of Fig. 5(a) encompassing blue to pale green, sug-
gesting that dendrites are favored to form under diffusion-dominant conditions. Consistently, the corresponding region in Fig. 5(b) is
blue, indicating that I > 0.7, and its boundary was marked with a dashed line. On the contrary, as the condition becomes more
advection-dominant (moving to the right with increase of y;), the color in Fig. 5(b) gradually changes toward red with continuous
decrease of the index I. This signifies a gradual recovery of randomness of particle depositions and its preferential formation of
compact structure as well. In the figure, the left boundary of circles (compact structures) was marked with a solid line. Naturally the
region in between the dashed and solid lines represents the structural transition zone as confirmed with triangles.

Overall, the index I shows a pretty similar behavior to the overall porosity along with variations of y and Knp. However, recalling
the aforementioned exceptional behavior of the overall porosity under high Knp and low y conditions, the index I is not likely subject
to the abnormal effect of highly diffusive nanoparticles. More specifically, the overall porosities at the three points marked by the
arrows Al, A2, and A3 in Fig. 5(a) are 90.5%, 90.7%, and 89.7%, respectively, showing the yellow color all together. But the symbol or
morphology of deposits significantly changes from diamond (dendrites) to circle (compact structure) in Fig. 5(a) together with a great
color change of index I in Fig. 5(b) (from blue to red through brown; corresponding to the value change of I from 0.80 to 0.33 through
0.45, respectively). This again proves that the overall porosity does not describe the structural difference of particle deposits.
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Fig. 6. Distinctive morphological evolution of multiple dendrites toward the compact structure by increasing y, or decreasing Knp: (a) log(Knp) =
1,log(ys) = — 3,1=0.92, 0, = 96%; (b) log(Knp) =1, log(ys) = —1,1=10.82, @, = 91%; and (c) log(Knp) = 0.5, log(y;) = — 1,1=0.75,8, =
91%, where @, is overall porosity.
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Furthermore, it is interesting to know how individual dendrites behave in response to the variation of each parameter (y; vs Knp),
particularly within the diffusion-dominant regime. Referring to Fig. 5(a), we considered two distinct paths for the purpose: 1) — 3 <
log(yp) <1 atlog(Knp) =1, and 2) — 1 <log(Knp) < 0.5 atlog(yz) = — 1. The results are summarized with three representative
contour plots in Fig. 6, with focus on the dendrites’ behavior.

When log(yy) alone increases from —3 to —1 along the first path, large dendrites widely separated in Fig. 6(a) are converted into
smaller dendrites with narrow interspace in Fig. 6(b). At this moment, the index I slightly decreases from 0.92 to 0.82, still in the
dendrite-appearance zone (I > 0.7), while the overall porosity clearly decreases along with a significant decrease in area fraction of
blue (empty) space. Further increase in log(y;) makes this trend more prominent by making the index I fall down below the first
transition boundary (I < 0.7), and eventually reaches a minimum of I = 0.2 by showing the compact structure. A similar early-stage
behavior of dendrites has been observed by decreasing log(Knp) from 1.0 in Fig. 6(b) to 0.5 in Fig. 6(c) at log(yz) = —1 along the
second path. Again, further decrease of log(Knp) alone leads to the aforementioned morphological transition toward the compact
structure.

To sum up the above results, dendritic structure is first transformed into an intermediate structure with the decrease in Knp and the
increase in yy. In this process, dendrites are reduced in size and interspacing, leaving only traces of the empty space between dendrites
and almost filling it up like Fig. 4(c). After that, this structural change is continued but slowed down until reaching the compact
structure. A more detailed process of change is included in Fig. S3 of supplementary material; Fig. S3(a)-(e) present the five local
porosity contours obtained while the y; increases along the first path; whereas Fig. S3(f)-(i) show the effect of Knp on the morphology
of deposits along the second path.

4. Model development
4.1. Model description

This chapter is devoted to how to develop a new model capable of a priori prediction of deposit structures in compact vs dendrites.
As a first step, we investigated the difference in morphological evolution of deposits growing under the two extreme conditions. A two-
dimensional MC simulation was performed for an intuitive understanding of the difference. Fig. 7(a) and (c) represent the deposit
structures at the early and late stages of growth, respectively, under a diffusion-dominant condition; both figures were directly
compared with Fig. 7(b) and (d) for an advection-dominant case, respectively. In the early stage of growth, there is no remarkable
difference in deposit structures; Fig. 7(a) and (b) show almost identical structures where particles are randomly deposited irrespective
of deposition condition, leaving many small isolated protrusions like a sprout on the floor. However, their growth patterns are quite
different depending on the deposition condition. Under the highly diffusive condition, some of the early protrusions selectively grow to
multiple tree-like dendrites (compare Fig. 7(a) and (c)). Note that initially unoccupied parts on the floor remain clean (undeposited)
during the growth. In contrast, under the advective condition, particle deposition seems to randomly occur on the entire floor without
site preference, so that the deposit uniformly grows to a near compact layer.

Here, we focused on the fact that dendrites grew only from existing protrusions on the surface. Once small protrusions are
generated by chance on the floor as seen in the inset of Fig. 7(a), a next (released) particle, if subject to random walks by diffusion, will
have a much greater chance of colliding with the protrusions due to the predominant horizontal displacement (see Eq. (2) and its
relevant statements in Chap. 2). As such, the selected protrusions fast grow to be tall and thick under diffusion-dominant condition. As
this process continues, the thickening of protrusions would decrease the surface-to-surface distance between adjacent protrusions so
that significantly reduces the number of particles arriving at the remaining clean floor.

Another point to note is about deposition fluxes of particles on to the top and side wall of protrusions, because the flux (per unit

(a) N,=100 (b) N,=100

é’- T . s 3. o

o B e \ﬁE‘: et tsadten] S eh ol ...-};.tJ..-(m; sl

(c) N,=1000 (d) N,=1000

4
%{é:j{é N

Fig. 7. Similarity and Dissimilarity at the early and late stages in the growth process of nanoparticle deposits: for simplicity, MC simulation was
performed on a smaller 2-D calculation domain of 200r,; and N,, stands for total number of deposited particles in the two-dimensional deposition; (a)

Knp = 2,7, = 0.0025,N, =100; (b) Knp = 0.2,5; = 1600,N, = 100; (c) Knp = 2,7, = 0.0025,N, = 1000; and (d) Knp = 0.2,7; = 1600,N, =
1000.
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area) directly determines the increasing rate of height or width of dendrites. Given a constant rate of deposition toward any surface of
dendrite (relating to the random motion of particles), the deposition flux to the side wall is rather decreased by the increase of side-wall
area during the growth, plus further decreased by the aforementioned shadowing effect. Hence the increase in the width of dendrite is
slowed and eventually stopped, while the top can grow actively with no limitation. This speculation is deemed as a plausible
explanation to the appearance of isolated dendrites in Figs. 4 and 6. In contrast, highly advective deposition is relatively simple to
understand. Since particles move straight down to the floor starting at random positions, they must be equally deposited without
discriminating the top of existing dendrites and clean floor, leading to the random simultaneous growth of deposits.

4.2. Formulation of model equation

Based on the foregoing speculation, we developed a predictive model of the deposit structure as follows. Recalling the inset of Fig. 7
(a), early-stage dendrites are approximated to rectangular columns with height H and width w, and these columns are simplified by
arranging them periodically by interval L. Fig. 8 shows a schematic diagram describing the behavior of a nanoparticle in between two
adjacent columns (shown as shaded rectangles); Region A refers to the top of the column, Region B refers to the side wall of the column,
and Region C refers to the unoccupied clean floor.

The probability that particles are deposited to Region A is called Py, and the number of particles deposited to the A is NPge o
when N particles in total pass through a virtual dotted line located at height H. Here, N(1 —Pg,) is the number of non-deposited
particles entering the void space between the columns. Then, the survived particles exhibit consecutive random walks by diffusion
over time while keep moving downward as depicted by a dashed arrow in Fig. 8. Some of these survived particles are deposited to
Region B of the side, until the rest particles reach Region C. When the average probability of particles being attached to Region B during
the time step At is Py, the number of particles deposited to Region B for At immediately after passing through the horizontal (dotted)
plane is N(1 — Pgep,0)Pdep, Which in turn yields the number of still non-deposited particles as N(1 — Pgg0)(1 — Pgep). After the second

time step t = 24t, the number of non-deposited particles is likewise calculated by N(1 — Pge0)(1 — Pdep)z. As such, the number of
survived particles per each consecutive time step is continually decreasing with the number of steps by the subsequent side-wall
depositions. If m steps are required to reach Region C, the number of particles deposited to Region C is N(1 — Pgepo)(1 — Pgep)™.
Here, the total number of steps m is simply determined by the advective velocity (v4q) and the height (H) as m = H/ v44At, not being
affected by the diffusive motion with an average displacement of zero in the z direction.

Overall, if the particle flux to the clean floor (Region C) is much lower than that to the top (A) or side (B) of column, most of
incoming particles will be used for the protrusions (columns) to grow to dendrites. This is expressed as the inequality in Eq. (3), where
Sa and S are the areas of Region A and Region C, respectively, and the left and right terms can be considered as the particle flux to the
regions.

NPdep,O > N(l - Pdcp,O) (1 - Pdep)m

SA SC (3)

When it comes to the probability of being deposited to Region A, it is calculated simply by the area ratio as Psp0 = Sa/ (Sa + Sc),
because all particles pass through the virtual horizontal plane (the dotted line in Fig. 8) with the same probability due to the random
nature. Applying this to Eq. (3), the inequality equation is further simplified into Eq. (4).

13> (1 - Pup)" (C))

The right side of Eq. (4) rapidly decreases in the direction that satisfies this inequality, when Py, is increased by the transverse

Fig. 8. A schematic diagram of particle behavior in between two adjacent dendrites (modelled as columns); where ‘A’, ‘B’, and ‘C’ signify the top
end, side wall of the column, and the clean floor, respectively; the numerical value of 1-to-m illustrates m-times repeated advective motion of
particle until reaches the floor; the relative coordinate x was defined as depicted and used only for deriving Eq. (12) while the absolute coordinate
(written as ‘X’) was defined from the side wall of the left column and used for Egs. (7,13); and the shaded (green) rectangles stand for two modelled
dendrites. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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(diffusive) movements of the particles at higher Knp or the number of moving steps (m) is increased with decreasing y,. Thus, dendritic
structures will be predominantly created. In the opposite cases such as lowering Knj, or increasing y, both P4, and m decreases, so that
the right-side term of Eq. (4) increases to approach unity. At this moment, the deposit layer will be near compact. In summary, since the
two predicted structures are exactly consistent with the simulation results in Chap. 3, Eq. (4) is deemed appropriate as a conditional
criterion for determining the deposit structures.

Moreover, the comparative code “>” is intended to emphasize that the right-side term in Eq. (4) must be sufficiently small to
produce a definite dendritic structure, considering that there is a transition zone in between dendrites and compact structure (see
Fig. 5). Here, it is ambiguous how small the right-side term of Eq. (4) should be. In Chap. 3, either I = 0.4 or 0.7 was presented as a
boundary value on the map for compact or dendritic structure, respectively. Similarly, we introduce a critical probability, P., which
acts as an upper threshold for the appearance of dendrites structure as seen in Eq. (5). Note that the P, will be included as a fitting
parameter of the model equation, but not being explicitly involved in the following formulation process.

Po=(1—Py)" ©)

The next step is to formulate the Py, accounting for the particle behavior depicted by dashed arrows in Fig. 8. For simplicity, we
approximated that particle’s behavior is two dimensional (2D) on the x-z plane; the horizontal (x—) component of displacement vector
of a particle for At is /6l (=v2DAt) only by diffusion, while its vertical displacement is simply la( = VaAt) to the negative z
direction only by advection, recalling no net displacement by diffusion on average. Note that a particle, if located at x within a distance
of the horizontal displacement from Region B as x < v/6l,, can be deposited to Region B with a probability of 0.5. On the other hand,
particles if x > v/6l,; will not be deposited to the wall of column, moving to the next step. As such, the local deposition probability
Py« Of particles, which is basically a function of the distance (x) from the side wall of the column, can be expressed as Eq. (6) and
represented as a solid line in Fig. 9(a).
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Fig. 9. Functional behaviors of (a) local deposition probability Py, . and (b) average deposition probability Py, along the distance x from the side
wall of left column; where the stepwise profile implies that all particles are subject to an equal (constant) diffusive displacement, while the

continuous (dashed) curves represent the results for normal probability distribution.
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0 < x < V6l

6
x> V6l (6)

0.5
P, epx\X) = ’
s ={
Averaging Pgg, () over the wall-to-wall distance (L —w) between dendrites, the average probability P4, can be expressed in terms
of lg or Knp as
L—w

1
I—w / Pep(x)dx =

V6l V6Knp

L—w L —w" @

P dep =

0

Let us recall that the number of discretized steps m was determined from the height H of the dendrite and the advective velocity v,q
as seen in Eq. (8), where At, ,, is the residence time of particle until being deposited to the floor.

H [ Vg = Aty = mAt (€))]

It is noteworthy that the value of m should be large enough to ensure near-zero statistical average for vertical diffusive dis-
placements of particle. If otherwise, vertical random walks of particle may alter the actual vertical velocity from v,4 as well as the m. In
order to secure a sufficiently large value of m regardless of deposition conditions, we revisited functional variations of At( = 37,), g,
and m with decreasing r, at a fixed v,4 toward the diffusion-dominant condition. Although the relaxation time 7, (or At) is shortened
with decrease of r,, under the free-molecular regime by its definition 7, = m, /for, with for, / Ccfxr;), the random walk velocity defined
as\/ksT/m, more increases in proportion to rI;S/ 2, which in turn increases the particle’s persistent distance L, for each time step.
Hence, if the H is fixed constant and not so large, the m can be decreased to below the lower limit by moH/l,,g,. In order to circumvent
this potential problem, the H is set to increase in proportion to the increase of l,;. Applying H = Cl,,;, (where C is a proportional
constant) to Eq. (8), a secured limit of m can be determined solely from the y;, independent of Knp as

Clg C kT C s
— 2B _ =, -0 9
" VadAt  3veq \| my, 3XF ®

Substituting Egs. (7) and (9) to the terms of P4, and m in Eq. (5) and taking a natural logarithm on both sides, we obtained a first
model equation expressed in terms of the two dimensionless parameters as

223 =C, In(1—C,Knp) (10)

where C and C, are unknown constants that will be obtained by curve fitting to pass the points corresponding to the boundary of
structural changes (I = 0.4 or 0.7) in Fig. 5(b). The values are listed in Table 1 and P, in Eq. (5) was included in C’l. Thus, Eq. (10)
indicates the functional relationship of y and Knp, which represents the boundary of structural changes passing through I = 0.4 or 0.7
depending on the set of C} and C, used. The two boundary curves are plotted as dotted lines in Fig. 5 such that the upper dotted line
represents the dendrite-to-intermediate transition boundary while the lower dotted line indicates the intermediate-to-compact tran-
sition. In Fig. 5(b), however, the upper line can trace the real boundary between “blue” and “green” up until the point B from the left, i.
e., only in a range of log Knp < 1, and the lower line is working likewise in a range of log Knp < — 0.5. Beyond the limit, the both lines
can no longer be used for prediction.

To improve the model prediction accuracy in high Knp, the expression of local deposition probability P (x) is modified to involve
Gaussian distribution of diffusive displacements, which is closer to the reality than the foregoing assumption that all particles have a
fixed diffusive displacement.

1 Ly
F(lag) _mexp< — 55 (11

Equation (11) is a probability density function for Gaussian random displacements (lg) with a standard deviation (¢) of vV2DAt (=

V/6l.) and an average of zero. Note that the Ly is actually a diffusive displacement that can vary from -co to +co depending on the
moving direction. Provided that a particle is located +x away from the left-column surface, it might be more convenient to use a
relative coordinate with reference to the center of the particle, as conceptually depicted with x in Fig. 8. The probability for the particle
to be deposited on the right-side wall of the left column Pg,,(x) is obtained by subtracting the probability Py, .(x) for the particle to

Table 1
Collection of the whole coefficients in Egs. (10,14-17) for model prediction of microstructural transition boundaries of nanoparticle.
Cl Cz ¢ (¢4 G Co Cs
Case 1° -5.10 0.33 —0.44 0.17 0.10 2.27 0.68
Case 2" —2.44 0.06 -0.13 0.50 0.28 7.69 6.82

2 From compact structure to intermediate structure.
> From dendritic structure to intermediate structure.

12



J. Kim et al. Journal of Aerosol Science 159 (2022) 105876

survive (not to be deposited) over the displacement for At from unity. Here, the Py, ,(x) is the same as the probability for the particle to
horizontally move as much as (—x to L — w — x) in terms of L from the original position (see Fig. 8). Thus the Py, «(x) can be expressed
as

L-w—x

Pdep_)-(x) =1- / f(ld,ff)dld,ff (12)

—x

Now, the average deposition probability Py, during At is calculated by averaging Pqe,«(x) over the empty space between adjacent
columns as

1 —A?) —1
Piur =1, / Piepa(x)dr=1 - (erf(A) +%) 13)
0

where the parameter A in the error function is (L — w")/v/12Knp.

Fig. 9(a) graphically shows the functional variation of P x(x) with x in Eq. (12) with a dashed line, in contrast to the stepwise
variation in Eq. (6). Note that particles, even located in the proximity of the side wall of column, do not have a deposition probability of
0.5; but behave with a deposition probability that gradually decreases with x until x < (L —w)/2 and then goes up again with x up to
0.5 just like mirror image, referring to Fig. 9(a). The profile implies that particles located in the center between columns have the
lowest but equal chance to deposit on either of the side walls, while particles displaced away from the center will deposit to any closer
column wall with higher probability, though they can still deposit to the opposite wall with lower (but non-zero) probability. This
figure sounds more realistic, taking into consideration the random nature of diffusive motion and its potential role in the probability.

Similarly, Fig. 9(b) highlights the variation of the resulting P4, with Knp obtained by Egs. (12-13), in comparison with that ob-
tained by Egs. (6) and (7). Clearly the assumption of a constant-distance random walk for all particles overestimates the average wall-
deposition probability Pg,, particularly when log Knp > 0. It is interesting to reconfirm that the prediction of the first model using Eq.
(10) becomes unrealistic when log Knp > 0 as marked with B in Fig. 5(b). For example, Eq. (10) predicts the appearance of dendrites in
the whole range of y; if log Knp > 1 (see the upper dotted line in Fig. 5(b)). We speculated that this prediction bias toward the dendritic
structure might be associated with the overestimation of Pg,, in Fig. 9(b).

Thus, substituting Egs. (13) and (9) to Eq. (5), the modified model equation is obtained as

/" P —2) !
25=C'n <erf(B) +%) 7 :

where B is C; /Knp. The two constants C;and C), are determined by fitting the dataset representing structural transition boundary (I =
0.4 or 0.7 in Fig. 5(b)) with Eq. (14) and listed in Table 1. The predicted boundary profile with C{and C’ for Case 2 in Table 1 is
highlighted with the dashed line (- -) in Fig. 5(a) and (b), representing the dendritic-to-intermediate structural transition boundary.
Whereas, the solid line in Fig. 5(a) and (b) shows the transition boundary obtained with the constants for Case 1 in Table 1. It is
noteworthy that even with constant values of Cjand Cj, the boundaries of structural transitions are well predicted throughout the
entire deposition condition range of this study.

4.3. Simplification of model equation and validation

In this section, Eq. (14) is simplified to gain an insight into functional relation of the Knp and y; on the transition boundary. Since
the complexity arises from the logarithmic term in Eq. (14), two limiting conditions of the parameter B are considered as follows.

When B « 1, the erf(B) and exp(—B?2) can be approximated to the first order upon Taylor series expansion, resulting in 2(B —B® /3)/
/7 and (1 — B?), respectively. The both terms are substituted into Eq. (14) to be arranged as

2 B\ (1-B)-1 B
0.5 ~ i = o~ i
1 =C ln(\/ﬁ_(B 3) + 7B > = (| ln(\/ﬁ_> (15)
On the other hand, if B > 1, then the erf(B) is approaching 1, and exp(—B?) will vanish. So, under this approximation, Eq. (14) is
now expressed as yo° = C/ In(1 — 1 /\/zB), which is further simplified using the Taylor series expansion of In(1 —x) = — x— x?/ 2+
O(x®) as

C//
e — \/'TIB (16)
Equations (15-16) are rearranged in terms of Knp and y; to yield the simplified model equation as
Crexp(Coxy?) (Knp > 10° or 107°%)
Knp = 05 0 05\ - a7
3% (Knp < 10° or 107°%)

where the C;, C5, and Cj3 are all constant and two sets of them are listed for Case 1 and 2 in Table 1. Actually, either the dotted line or
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solid line in Fig. 5 is likely divided to a curved section upon high Knp and a linear section in low Knp. Since Fig. 5 is a log-log plot, the
curved section of each boundary is expressed by the upper equation in Eq. (17), while the linear section is done by the lower equation.

Given a deposition condition in terms of (Knp, y5), for instance, if dendritic structure is of interest, one can start the prediction from
collecting the three constants for Case 2 in Table 1 and then check if Knp > 0.28 exp(7.69y%°) when Knp > 10° or Knp > 6.82y%°> when
Knp < 10°. If so, one may predict the formation of dendritic structure. On the contrary, compact structure, corresponding to Case 1,
will form if Knp < 0.1 exp(2.27y25) when Knp > 107%3 or Knp < 0.68y2> when Knp < 107%5. Deposit will have intermediate structure
if the above conditions are not met altogether.

Peclet number (Pe), which is relevant to transport phenomena in continuum regime, is defined as a ratio of advective transport rate
to diffusive transport rate of particles, so can be expressed in terms of Knp and y; as Pe = Knp x9S (Lindquist et al., 2014). Li et al.
(2009) reported through on-lattice MC simulation that as Pe increases, the fractal dimension of particle deposit initially increases and
then levels off around 3 upon Pe > 10~%4, resulting in a compact structure. In their on-lattice MC simulation, a particle located in a cell
of simulation lattice was allowed to move by diffusion to a neighboring cell for At. Since the cell-to-cell distance was equal to particle
diameter in their study, the diffusive displacement Iy in our study is now 2r,, which results in Knp( = g, /1y = lur /v/61p) =2 10701,
Next, recalling that their structural transition started from Pe = 1094, the corresponding y; is calculated to be 10~ by substituting
the two values into the foregoing expression Pe = Kn;,'y%°. Interestingly, the condition of Knp = 10! and y, = 107! indicates from
Fig. 5 that their deposit structure has just started to transit from dendritic structure toward compact structure, staying around the
intermediate structure between the dashed and solid lines. This is in reasonable agreement with their finding.

Referring to another on-lattice MC simulation result by Castillo et al. (2014), the dendritic structure was formed at Pe = 107!
corresponding to (Knp = 107%1, y = 10722), while the compact structure was found at Pe = 102, i.e., (Knp = 107%1, y, = 10%8).
Consistent with their findings, the first condition lies above the dashed line in Fig. 5, ensuring the dendritic structure, and the second
condition is in red region, right of the solid line, representing the compact structure. The two experimental studies (Thimsen & Biswas,
2007; Thimsen et al., 2008) that showed SEM images of dendritic structures in Fig. 2 were used to further test the present criteria for
prediction of deposit structure. Based on the literature, the relevant conditions are expressed as (Knp = 10'7, y, =10") and (Knp =
105, y = 107%6). Again one may confirm that the two conditions are safely in the blue region of Fig. 5(b) corresponding to the
appearance of dendrites. Lastly it should be noted that there are very limited experimental literatures reporting the structural char-
acteristics in connection with deposition condition, even for compact deposits. This is why the overall images of simulated deposits
were qualitatively compared with the SEM images, though the overall porosity was directly compared with existing simulation data.

5. Conclusions

The purpose of this study is to provide a guidance for understanding structural change of nanoparticle deposits depending on the
deposition conditions. The off-lattice MC simulation has been performed to produce various structures of nanoparticle deposits on a
largest deposition substrate with 10007, x 1000r,. The deposition conditions are expressed in terms of diffusive Knudsen number
(Knp) and dimensionless translational energy (yz), and cover a wide range of the diffusion and advection of particles with Knp:
1071521015 and y;: 1073-10°. In contrast to compact structure that is relatively simple to analyze, little is known about dendritic
structure comprising multiple dendrites even for its structural characteristics. With newly proposed concept of local porosity along the
vertical prisms, we successfully visualized the distinct characteristics of deposit structures. Employing the spatial autocorrelation index
I, deposit structures were quantitatively classified into dendritic, intermediate (transitional), and compact structures for the first time,
e.g., with referencetol > 0.7,0.4 <1< 0.7, and I < 0.4, respectively. Also we provided a new contour plot of the index I as well as
the overall porosity as a function of Knp and yj, plus simultaneously displaying the observed distinctive structure among the three
microstructures with different symbols. Lastly, two versions of mathematical model equations were developed to predict a specific
microstructure of deposit between the dendritic, intermediate, and compact structures based on Knp and y and reasonably validated
with existing simulation and experimental studies, for the first time.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (No. 2020R1A2C201163412); and also by Samsung
Electronics DS Industry-University Cooperation Center.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jaerosci.2021.105876.

14


https://doi.org/10.1016/j.jaerosci.2021.105876

J. Kim et al. Journal of Aerosol Science 159 (2022) 105876
Appendix. Spatial autocorrelation index

The spatial autocorrelation index, often known as Moran’s I, measures the degree of correlation between variables distributed in
space. Equation (A1) is the most commonly used formula of Moran’s I (Zhang & Lin, 2007).

:E Z,-E,-Wij (x; — %) (x./' - j)

SRS S L

(A1)

where N is the number of lattice points used in the analysis; i and j are the lattice ID indexes varying from 1 to 250,000 in this study; x;

and x; are actually the local porosity contour data displayed on a horizontal plane; X is the average value; w; is the weight between the i

and j lattice points; and W is the sum of wy (W = "> w;). The weight (w;;) was set to 1 for the four neighboring lattices (up and down,
i

left and right) directly adjacent each other and O for all other lattices. The resulting value of I varies according to the resolution of

lattice system (Qi & Wu, 1996), for example, a coarse lattice tends to reduce I values, while a too dense lattice if used can divide a single

particle into several pieces so that can increase I value too much. Therefore, in this study, particle diameter (d,) was selected as the

lattice size, which is actually the same as that of the local porosity contours discussed in Section 3.2.
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